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Abstract 

Studying urban population and spatial structure using aggregate census data suffers from 

problems of spatial aggregation and temporal comparability, particularly for the rapidly changing 

cities of China.  The recent development in GIS has potential to represent population distribution 

in a continuous field with grid cells using surface model techniques, which is a more accurate 

representation of population distribution.  This paper attempts to better model and analyze 

population distribution in Chinese cities, using Nanjing as a case.  With the aids of the detailed 

urban land use and building distribution data, we develop an alternative method to generate 

population surface, and uncover spatial variations of population distribution in Nanjing.  We 

found that despite suburbanization, Nanjing remains a compact city, and population density 

declines quickly with the increase of the distance to the CBD.  We also use exploratory spatial 

data analysis to investigate spatial associations between non-residential land uses and population 

density, and have found significant influence of commercial activities on population distribution.  

Industrial suburbanization, however, does not have significant effects on population 

suburbanization. 
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1. Introduction 

Studying urban population distribution is essential to the understanding of urban spatial structure 

and the formation of government policies (Ingram, 1998).  Census data is the most often used, 

which is reported aggregately based on areal units, such as census tracts in the U.S., census 

enumeration districts in the U.K. and subdistricts in China.  Based on the aggregate census data, 

scholars have used population density functions, either monocentric or polycentric models, to 

analyze urban population distribution (Baumont et al., 2004; Clark, 1951; McMillen and 

McDonald, 1998; Small and Song, 1994).  Orthodox density functions use the distance from city 

centers or subcenters as the independent variable to model urban population distribution, and 

stress the distance decay of population density, which usually takes negative exponential forms. 

 With economic restructuring and urban change, researchers and policy makers have been 

facing the challenge of how to represent “real world” population distribution as accurate as 

possible (Bracken, 1993; Langford et al., 1991; Martin and Higgs, 1997).  Aggregate census data 

suffers from various analytical problems.  First, due to the arbitrary boundary delineating of areal 

unit, results vary with modifying the boundaries and/or scale of data aggregation (the 

“modifiable areal unit problem” or MAUP) (Fotheringham and Wong, 1991; Openshaw, 1983).  

Second, population distribution is usually displayed homogenously in a census unit, which masks 

spatial heterogeneity of population distribution and therefore to some extent mis-represents 

urban population.  Thirdly, census unit boundaries often do not coincide with varied forms of 

urban spaces and units, such as school districts, communities, and land use patterns, which 

makes data integration and temporal comparison problematic, intensified by changing census 

boundaries.  Last, density functions based on census areal units are less capable of capturing 

directional and local variations due to problems of aggregation and limited census unit samples.  
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Moreover, Non-residential land use has significant impact on urban population distribution 

(Ingram, 1998), and an analysis of land use and population density can improve the 

understanding of urban spatial structure, which, however, is challenging because of the difficulty 

to integrate aggregate census data with disaggregate land-use data. 

The development of GIS has enabled researchers to represent population distribution 

using surface model techniques to minimize the aforementioned problems.  In contrast to the 

discrete census unit-based population distribution, surface models depict population distribution 

in a continuous field with grid cells, which is a more detailed and accurate representation of 

population distribution and can incorporate disaggregate land-use data.  Moreover, population 

surfaces can be used in research on population distribution and urban structure.  Martin (1998), 

for example, used population surface to develop a method of automatically identifying featured 

neighborhoods in Southampton of the U.K. In short, disaggregated population surface models 

provide not only a more detailed and accurate representation of population distribution, but also 

a better platform to study population distribution and land use because disaggregate land-use 

data can be incorporated into population surface. 

The key to generate population surface models is how to disaggregate population data 

into grid cells.  Bracken and Martin (1989) used inverse distance weighted (IDW) method, a 

point interpolation technique, to develop population surface for census enumeration districts in 

the U.K; they first assigned population counts to district centroids, and then interpolate empty 

cells by moving windows in which population of an empty cell is the weighted sum of all the 

centroids included in the window with closer centroids having greater “weight” value and vice 

versa.  This approach, however, is over-simplified, and its accuracy needs to be improved.  

Meanwhile, the advance of remote sensing has stimulated the interests of researchers to use 
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ancillary data such as land use data extracted from satellite imagery to interpolate original areal 

population counts to surface cells (Eicher and Brewer, 2001; Langford et al., 1991), which is 

generally called dasymetric mapping, an areal interpolation technique.  For example, Langford 

and Unwin (1994) classified satellite imagery data to binary residential and non-residential land-

use raster and assigning population into each areal unit evenly, and Mennis (2003) used a similar 

framework to develop population surface model for southeast Pennsylvania with special 

reference to relative difference of population distribution among census blocks and among 

different urbanization-based land-uses.  This approach, however, also has limitations, because of 

mis-classification of land use/cover, and low accuracy of population estimation.  

China has been undergoing rapid growth and transition from state socialism since the 

reform of 1978, earmarked by gradualism, partial reform, and unevenness.  Chinese cities, as 

centers of transition, have been transformed from socialist cities to post-socialist transitional 

cities characterized by transitional institutions, hybrid economies, and fragmented spaces (Lin 

and Wei, 2002; Ma, 2002; Wei and Leung, 2005; Wong et al., 2003).  Unprecedented urban 

growth is accompanied by urban spatial restructuring with emerging CBD, globalizing 

development zones, suburbanization, and fragmented residential spaces.  Scholars have argued 

that Chinese cities are experiencing drastic growth (Wei and Li, 2002) and suburbanization, with 

declining or stagnant population growth in urban core areas (Zhou and Ma, 2000), that 

development zones are frontiers of globalization (Wei and Leung, 2005), and that a polycentric 

urban development model has emerged in urban China (Wu, 1998).  

Population distribution is essential to the study of urban demographic transition and 

urban spatial structure in China.  Subdistrict (jie dao or zhen), the finest geographical scale at 

which the census population data is available, has been used to study urban population 
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distribution and density.  Wang and Zhou (1999) set up population density functions for Beijing 

for 1982 and 1990 respectively to depict population density change with the distance to the city 

center, regarding population distribution within subdistricts as homogenous, so did Wang and 

Meng’s (1999) study on Shengyang.  These studies have improved our understanding of urban 

population distribution in Chinese cities, but due to aforementioned problems with census units, 

the heterogeneous population distribution in subdistricts need to be unmasked.  The chaotic 

gradualism, drastic urbanization, and fragmented urban spaces have also prompted the efforts of 

the Chinese government to better plan and manage Chinese cities, which often need detailed and 

accurate population data at finer scales.  

 Through a study of Nanjing, this paper represents the recent efforts to enhance the 

representation and analysis of population distribution and urban spaces in Chinese cities.  With 

the aids of GIS (ArcGISTM, GeodaTM, and GIS programming) and land-parcel and building 

distribution data, we will develop an alternative method to generate intraurban population 

surface model of the 2000 census population, and use exploratory spatial data analysis (ESDA) 

to investigate spatial associations between non-residential land uses and population distribution.  

To generate population surface, we use the relative differences of residential building floor areas 

to disaggregate subdistrict population to residential land parcels.  Through a customized spatial 

overlay operation, we assign population of residential parcels into a vector grid of 100×100 

meter cell size, which is then converted to a raster grid with the same cell size.  This approach 

can improve the accuracy of census population disaggregation, minimize the modifiable areal 

unit problem, and provide detailed population data.  Based on the generated population surface, 

we further analyze the characteristics of population distribution and spatial associations of land 

use and population distribution using ESDA, which can help us to uncover the extent of 
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suburbanization and the salient features of population and spatial structure in Chinese cities.  

Such a detailed study of urban population distribution and spatial structure in Chinese cities has 

rarely been conducted previously due to data and methodological constraints, especially the lack 

of land-parcel and building distribution data. 

 

2. Research Setting and Data Issues 

The paper investigates urban population distribution in Nanjing, an ancient capital city of China 

and the capital of Jiangsu province.  Located in the Shanghai-centered Yangtze Delta (Figure 1), 

Nanjing represents fast growing large coastal cities of China.  The study area covers most of the 

continuous built-up area in the city, including 57 subdistricts or parts of them, and had an area of 

312.37 square kilometers, and a population of 3,191,798 in 2000. The central city area or the 

urban core of Nanjing is within the old city wall where residential parcels are more densely 

distributed (Figure 1).   

    (Figure 1 about here) 

 The Bureau of Land Resources in Nanjing has set up a land management information 

system which stores detailed land parcel and building data in the city. After excluding some 

confidential land user attributes information, the research mainly uses three datasets of Nanjing 

in 2000: urban land-use parcel data, building distribution data, and census data at the subdistrict 

level used as the original population data source.  Together these three datasets provide us the 

valuable data required for this study.  While census data has been made available to researchers, 

Chinese cities rarely provide detailed urban land-use parcel and building distribution data, since 

few collect those data.  Nanjing, however, is a national pilot city in developing digital land use 

and building databases, which has made this research possible.  Building distribution data with 
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story type attributes covers most of the continuous built-up area of the city, the focus area of the 

paper.  Figure 1 shows the study area with the residential land parcels, which cover all the 

residential buildings studied.  

The original land parcel, spatial boundaries of census subdistricts and building 

distribution data are in CAD format, and in polygon geometric shape, which have to be 

processed to generate population surface.  In the original building distribution data, there is an 

attribute field indicating three types of building based on the number of stories: less than 2 

stories, 2-10 stories and above 10 stories, coded as 1, 2 and 3 respectively in the database. After 

converting them into ESRI GeodatabaseTM, we reclassify the original more than 30 land-use 

types into 8 land-use types and extract all the residential land-use parcels to create a new 

residential land-use parcel feature class.  We calculate the relative floor area for each building, 

by multiplying the building polygon area with building story type. All the buildings located in 

residential land parcels are extracted into a new residential building feature class.  

We conduct a set of spatial queries and field summary operations to add two new 

attributes to residential land parcel feature class: subdistrict population and residential building 

floor area where the residential land parcel is located, with the addition of the third new field to 

indicate residential building floor area in each residential land parcel. These three new fields will 

be used to assign subdistrict population to residential land parcel in following section to generate 

population surface.  
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3. Urban Population Distribution and Surface Models 

In this study, we estimate population of each residential land parcel based on its total relative 

building floor area, which is used to decide the proportions of subdistrict population assigned to 

residential land parcels. The process for generating raster population surface is illustrated in 

Figure 2. The following equation represents the calculation scheme for assigning population 

counts to individual residential land parcel: 

j
ij

j

SubPop PFLArea
ParcelPop

SubPFLArea
i×

=                                              (1) 

in which  is the population of residential land parcel i in subdistrict j; ijParcelPop jSubPop is the 

total population of subdistrict j; is the building floor area of residential land parcel i; iPFLArea

jSubPFLArea is the total building floor area of all residential land parcels in subdistrict j.  

i

j

PFLArea
SubPFLArea

 is the proportion of the building floor area of a residential land parcel to the total 

building floor area of all residential land parcels in the subdistrict.  

 
(Figure 2 about here) 

 
 The above calculations disaggregate subdistrict population to residential land parcels 

based on their proportions of residential building floor area in the total residential building floor 

area of the subdistrict. To generate a continuous population surface based on the residential land 

parcels with population counts assigned, we first create a vector grid feature class, which covers 

the whole study area with 68,688 100×100m cells.  

 Mennis (2003) used 100m-resoultion based on remote sensing land-use data to generate 

raster population surface in city of Philadelphia, which, however, can only partly capture spatial 

variation of intraurban population because of the oversimplified classification of land-use data 
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(i.e., high-density urban, low-density urban, and nonurban areas).  Our approach is built upon 

more detailed residential building floor areas and is not limited to the resolution of satellite 

imagery.  It is more flexible and we can choose the resolution of the vector grid optionally.  For 

comparison, we also choose 100×100m cell size to demonstrate that population surface 

generated by our approach can more effectively capture the spatial variations of intraurban 

population density.  

We’ve conducted a customized spatial overlay operation in ArcGISTM environment to 

proportionally assign population counts of residential land parcels to each cell of the vector grid, 

following the widely adopted approach that the proportion of population counts of a parcel is 

determined by the proportion of the area of a parcel intersected with a cell.  The customized 

spatial overlay is coded with Visual Basic of Application (VBA) embedded in ArcGISTM.  More 

specifically, cell population is calculated using the following formula: 

                                                                                  (2)                          
1

( %
n

i j
j

CellPop ParcelPop PInCell
=

= ×∑ )ji

where is the population assigned to cell i; iCellPop jParcelPop is the population of parcel j 

intersected with cell i; % jiPInCell is the area percentage of parcel j within cell i. After this 

operation, each vector grid cell has a population counts attribute.  The vector grid is then 

converted to a 100×100m resolution raster grid with the same number of cells, which represents 

the population surface for Nanjing. 

Using the original census data, Figure 3 presents population density distribution by 

subdistrict, and Table 1 provides the summary statistics of the subdistricts, with most of the 

subdistricts falling totally within the study area.  Figure 3, a general map of population 

distribution in Nanjing, shows high-density districts in the central city within the old city wall.  
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The homogenous population distribution within subdistricts as shown by the subdistrict map 

(Figure 3), however, masks the real distribution of urban population, which is heterogeneous and 

unevenly distributed, especially within suburban subdistricts.  From Figure 3, we cannot observe 

any nodes of population distribution in the suburban areas in the south of Yangtze River, which, 

as we will show in the next sections, is misleading.  

 (Figure 3 and Table 1 about here) 

 With our disaggregated population data, Figure 4 shows the raster population surface of 

Nanjing with 100m resolutions.  It can be clearly observed that the raster population surface 

provides more detailed information than the vector-based population density representation by 

subdistrict shown in Figure 3.  Moreover, Figure 4 shows more “natural” and realistic 

distribution of urban population, with uneven distribution of suburban population and less drastic 

changes at the subdistrict boundaries.   

(Figure 4 about here) 

The uneven distribution of urban population within subdistricts can be further illustrated 

by surface models of individual subdistricts.  Figure 5 compares the representation of population 

in the CBD by raster surface with the representation by vector-based subdistricts. Coefficient of 

variance (CV) of population density by subdistricts was only 0.3 ranging from 178 

persons/10,000m2 to 573 persons/10,000m2, while the CV was 0.89 by raster population surface 

ranging from 0 person/10,000m2 to 1577 persons/10,000m2.  In contrast to the homogenous 

population distribution by vector representation within individual subdistrict, the raster 

population surface reveals high heterogeneity of population in the CBD, as revealed by the map 

and the high CV value.  More significantly, population raster surface can expose the more 

dispersed and uneven population distribution in suburban areas, as evidenced in Figure 6, which 
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compares raster representation of population with vector representation by subdistricts in a 

southeastern suburban town (Honghua Town).  The vector map on the left treats the whole town 

with the same population density (41 persons/10,000m2) and a CV of 0, but the raster map on the 

right reveals substantial spatial variation, with population density ranging from zero to 729 

persons/10,000m2 and a high CV of 2.64. 

(Figures 5 and 6 about here) 

 

4.  Urban Population Density and Spatial Structure 

The generated population surface provides us a valuable platform for studying urban population 

distribution in Nanjing.  From the raster population surface (Figure 4), we can see that in general, 

population density declines from the central city to suburban areas. Though Chinese cities 

including Nanjing have been experiencing population suburbanization (Feng and Zhou, 2003; 

Zhou and Ma, 2000) since the mid-1980s, the central city of Nanjing is still characterized by 

high-density population distribution.  Extreme values of population density (1,000-1577 

persons/10,000m2) mainly occurred in the surrounding areas of CBD and the northwest of the 

CBD.  These findings suggest Chinese cities like Nanjing remain highly centralized, with limited 

level of suburbanization.  

One of the distinguished properties of raster population surface is that it can provide an 

effective visualization of population density from statistical density functions of spatial 

distributions (Bracken, 1993).  Based on the generated population surface, we further conduct a 

neighborhood statistic to calculate mean population density in a circle with 800 meter radius 

centered at each cell’s centroid to uncover agglomeration and dispersion effects of population 

distribution.  From the results of the operation (Figure 7), we can see that in Nanjing, population 
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density exhibited a concentric structure with two centers: one in the surrounding area of the CBD, 

and the other in central city northwest. The core area of the CBD, with advanced service 

functions, had relatively lower population density, immediately surrounded by areas with very 

high population density.  This contrasts somewhat with cities in the West where CBDs tend to 

have low population density, with a slow rise and then decline of population density towards 

suburban areas.  The other population center is actually the economic subcenter of Nanjing, i.e. 

the area along Shanxi and Hunan roads in the northwest.  Since this center functions mainly as 

residential clusters, the core area of this center did not show patterns of lower-higher population 

density as found in the CBD.  This also contrasts sharply with Western cities where metropolitan 

subcenters also tend to have low population density. 

(Figure 7 about here) 

 To uncover population distribution with distance to the city center and based on the 

neighborhood statistic population surface, we select six directions starting from the CBD (see 

Figure 7).  In each direction, we extract population density values in every other 200m from the 

population surface.  Changing population density with the increasing distance from the CBD is 

shown in Figure 8.  In general, population density declined with distance from the CBD, with 

some fluctuations due to neighborhood characteristics and the distribution of satellite towns in 

the suburban areas.  We have found that population density often drops substantially in 1-3 km 

from the city center, except for the northwest direction with dense population distribution, 

indicating the compact nature of Chinese cities.    

(Figure 8 about here) 

In the direction of the northeast (Figure 8a), after a sudden drop of population density in 

the Xuanwu Lake, population density reached another peak in Maigaoqiao area due to the 
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development of a suburban industrial cluster with more than one hundred plants in electronics, 

automobile, and machinery, initially developed during Mao’s era.  Population density also rose 

slightly at the far end of this direction where several petrochemical plants are located.  Figures 

8b and 8d show similar patterns: population density reached peak values within 2 km from the 

city center, and then declined quickly.  They rebounded in inner suburban areas in Xiaolingwei 

(with education facilities) and Xinglong (another industrial/residential area) respectively, and 

then dropped quickly again, with few people living beyond 8 km to the city center.  In the 

direction of the southeast and the west (Figures 8c and 8e), population density declined 

constantly, without significant population subcenters in the suburban areas.  Figure 8f shows 

high population density and slower decline in the northwestern direction because these are old 

urban neighborhoods where subcenters of economy and population of Nanjing are located.  Both 

Figures 7 and 8 show the uneven distribution of population in the suburban areas, with several 

nodes of population distribution, which are masked by the orthodox vector representation in 

Figure 3. 

Population surface also provides a better data source than census areal-units for studying 

density functions.  One of the problems associated with census areal unit-based density function 

is non-random samples, which means there are more observations near the center than those near 

the periphery (Wang and Zhou, 1999).  Samples from population surface, however, can avoid 

such a problem.  Using the extracted population density values along the six directions and 

nonlinear regressions, we test the most commonly used exponential functions, in the form of 

Dr=a*exp(b*r), in which Dr is the population density, r is distance from CBD center, which, 

according to Wang and Zhou (1999), fits the Chinese cities the best.  For the direction A, we 

exclude the part with no population over Xuanwu Lake. As shown in the regression results 
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(Table 2), exponential functions fit very well in the directions of A, B, C, D and E, with very 

high R2 values.  In the direction F, R2 and b values are relatively low, because of slow decline of 

population density due to the economic subcenter.  We also test the same exponential function 

with original subdistrict census data (Table 2). In contrast to the population surface-based density 

function, the subdistrict-based density function presents a much lower R2 value (0.421) and poor 

model fitness, which is attributable to the poor samples from subdistrict-based population 

distribution and further proves the advantages of population surface.                                                                       

(Table 2 about here) 

 

5.  Spatial Effects of Non-residential Land Use on Population Distribution 

The above section uses the generated population surface to reveal general spatial patterns of 

urban population distribution in Nanjing, and in this section, we investigate how population 

distribution varies with the change of urban land uses.  We use the population surface to analyze 

spatial associations between land use and population density with exploratory spatial data 

analysis.  Traditionally, researchers set up density functions based on monocentric or polycentric 

models to depict the change of population density with the distance from the CBD or economic 

subcenters.  More recently, Cuthbert and Anderson (2002) used bivariate K-function to examine 

the spatial association of residential and commercial land use patterns and expose the change of 

urban form in the Halifax-Dartmouth region.   

The generated population surface and land-use parcel data allow us to explore spatial 

associations of non-residential land use and population distribution.  Three types of non-

residential urban land use, which dominate urban spaces, are taken into account: commercial & 

managerial, road, and industrial land uses.  Since the cell size of the original population surface 
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(100×100m) is too small to aggregate the land-use information, we increase the cell size of 

population surface to 500×500m, so that we can capture both population and land-use variations 

more effectively.  

After performing the same procedure as described in Figure 2 to generate a population 

surface with 500×500m cell size, we assign land-use information to each cell of the population 

surface through the customized spatial overlay operation same as those used in generating 

population surface.  For commercial & managerial land-use, instead of using parcel area, we use 

building floor area of each parcel obtained with several spatial and field operations, since it is 

more appropriate to represent the commercial & managerial land-use intensity with building 

floor area than with parcel area.  We perform the spatial overlay between commercial & 

managerial land-use feature class and 500×500m population surface, so each cell of the 

population surface has an attribute of commercial & managerial building floor area. For 

industrial land use the same procedure is performed to assign industrial building floor area to 

each population cell. For road land use, it is reasonable to only assign the area to each cell. After 

all the necessary operations, each cell of the population surface has both population attribute and 

three land-use attributes indicated by building floor area or area. 

 To detect the potential spatial autocorrelations among population density and non-

residential land-use activities, we calculate a set of bivariate global Moran’s I for each pair of 

three land-use variables and population density.  The bivariate global Moran’s I used in the study 

takes the following form:  

                                                     
( 1)

n n
l p

ij i j
i j

lp n n

ij
i j

n w z z
I

n w
=

−

∑∑

∑∑
                                                    (3) 

14   



 

where lpI  is the bivariate of land-use type l and population density;  is the standardized value 

of land-use variable and 

l
iz

p
jz is the standardized value of population in neighborhood cells; is 

the spatial weight measure from  row-standardized spatial weights matrix. 

ijw

The results show that the bivariate global Moran’s I of commerce & management–

population, road-population and industry-population are 0.4740, 0.5456 and 0.0404 respectively 

(all values are significant at 5% level using permutation approach for inference with 999 

permutations). This suggests that non-residential land uses, from the global view, had significant 

positive spatial autocorrelations with population density.  Commerce & management had the 

strongest spatial correlation with population density, followed by road and industrial land uses, 

while industrial land use had pretty lower influence on population distribution.  

 As urban land use has apparent spatial variations, we are more concerned about how 

different local land-use activities influence population distribution. To uncover the influence of 

local spatial variations of land use on population distribution, we use Moran scatterplots and 

Local Indicators of Spatial Association (LISA)(Anselin, 1995).  We plot the spatial lag pZ
W of 

population against land-use variables, and use the four quadrants of the scatterplot to identify 

four types of spatial relationships between land use and population distribution: High-High, 

Low-Low, High-Low, and Low-High.  For example, High-High means a cell with high land-use 

intensity is surrounded by cells with high population density.  The positive High-High and Low-

Low spatial autocorrelation indicate a spatial clustering of similar values (high land-use intensity 

surrounded by high population density and vice versa) and the negative High-Low and Low-

High indicate a spatial clustering of dissimilar values. Furthermore, LISA statistics are used to 

assess the significance of such spatial associations.  

The local bivariate Moran’s I used in the research takes the following form: 
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n

lp l p
i i ij

j i
jI z w z

≠

= ∑                                                           (4) 

where  is standardized value of land-use variable of cell at location i, l
iz p

jz is the standardized 

population density value at surrounding cells and is the spatial weight measure from the row-

standardized spatial weights matrix. Inference for the bivariate local Moran’s I uses a conditional 

permutation approach with 999 permutations. The approach requires that  of land-use value at 

location i is held fixed, while 

ijw

l
iz

p
jz of population density values are randomly permutated at all 

other locations. The p-values of bivariate local Moran’s I statistic are then pseudo-significance 

levels (Anselin, 1995). 

 Figures 9-11 show the spatial distributions of the four types of spatial associations 

between land use and population density and their significance maps of bivariate local Moran’s I.  

It’s evident that the spatial associations of the three non-residential land-uses with population 

distribution vary greatly in Nanjing.  The positive High-High and Low-Low spatial association 

between commercial & managerial land use and population distribution accounted for 19% and 

58% of the total cells in the population surface respectively (Figure 9).  Almost all the cells in 

the central city area are characterized by the High-High spatial association between commercial 

& managerial land-use and population distribution.  Moreover, most of the cells with High-High 

spatial association are significant referred to local Moran’s I.  These findings confirm that the 

extent of suburbanization remains limited in Nanjing (or the Chinese cities in general), and city 

centers remain densely populations, with intense commercial and managerial land use patterns. 

(Figure 9-11 about here) 
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In the last decade, central cities in China have been undergoing massive redevelopment, 

with the construction of high-rise office buildings and commercial spaces stimulated by 

economic reforms and globalization, which has forced the relocation of some central city 

residents to suburban areas.  Moreover, new migrants also find home in less expensive suburban 

areas.  The process of suburbanization and urbanization, however, has been poorly managed, and 

the development of commerce and service activities in those areas has been lagging behind.  

Consequently, while commercial & managerial land use and population were both highly 

clustered in the central city area, cells of Low-High spatial associations are mainly located in the 

inner suburb area close to the central city.   

Figure 12 shows the general picture of population change at the subdistrict level 

from1990 to 2000.  We can see that population of the central city increased slowly in general and 

several subdistricts lost population.  Population of inner suburban subdistricts increased 

substantially, especially in some west, southeast and northeast subdistricts.  Population of outer 

suburban subdistricts, however, increased slowly compared with inner suburban subdistricts.  

Table 3 presents the population change of subdistricts in central city, inner suburb and outer 

suburb from 1982 to 2000. Population of central city subdistricts accounted for 53.06% of the 

total population in the study area in 1982, which decreased to 49.61% and 40.09% in 1990 and 

2000 respectively.  The share of population in inner suburban subdistricts, however, increased 

from 22.93% to 37.01% from 1982 to 2000, while that of outer suburban subdistricts declined 

slightly from 24.01% to 22.90%. It is evident that population decentralization has been 

concentrated in the inner suburb.   

   (Figure 12 and Table 3 about here) 
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Furthermore, through the revealed spatial association between commercial & managerial 

land use and population distribution, we find that population decentralization in Nanjing has a 

limited spatial extent, since almost all the Low-High cells are located within 2-3 kilometers from 

the CBD.  Such compact patterns reflect urban planning control in Nanjing, and the widely use 

of bicycles as the main mode of transportation.  Cells with Low-Low spatial association are 

mostly found in outer suburban area which remained sparsely developed, and north of the 

Yangtze River which for years has served as a physical barrier to block the northern, 

northwestern, and western expansion of Nanjing across the river.  Regarding the significance of 

the spatial associations, large portions of High-High and Low-Low cells are significant, while 

much fewer Low-High and High-Low cells are significant. This implies that the two positive 

spatial associations of commercial & managerial land-use and population distribution have 

crucial impacts on the urban spatial structure.  

 The analysis of global Moran’s I suggests that industrial land use was less influential on 

overall population distribution.  As shown in Figure 10, industrial suburbanization is significant 

in Nanjing where most of the industrial land uses were located in the outer suburban area, which, 

however, has not affected population suburbanization substantially. As to the significance of the 

spatial associations, most of the High-High cells and Low-High cells in the central city were 

significant.  Most of the positive spatial associations between industrial land use and population 

distribution were located in suburban areas and fringe of the central city. The High-High spatial 

association, only accounting 13% of the total cells, was found in the fringe of central city and 

suburban areas close to central city.  These areas are where most of the current industries in 

Nanjing area located, with workers living in the central city or nearby areas.  The Low-Low 

spatial association accounted for 46% of the total cells, and was mainly found in the outer 
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suburban area, indicating the outer suburban area of Nanjing remained sparsely populated, with 

limited industrial development.  

 The negative Low-High spatial association was mainly found in the central city area.  

Under the influence of socialist ideology, Chinese cities during Mao’s era went through a drastic 

industrialization process to transform capitalist consuming cities to socialist productive cities, 

and many factories were built in central city and suburban areas.  With economic reforms and the 

introduction of land markets, many state-owned industrial enterprises were shut down, privatized, 

or relocated to suburban areas (Wei and Li, 2002).  Consequently, central cities, including 

Nanjing, have few industries left, which led to the pattern of low industrial land use and high 

population density in the central city found in this paper.  On the other hand, High-Low spatial 

association was mainly found in some major outer suburban industrial clusters.  Most of these 

areas were developed during Mao’s era as suburban industrial centers with free land provided by 

the state and extensive land use patterns, such as the cluster of large petrochemical plants in the 

northeast of city.  Moreover, with limited development in services such as schools and health 

care, some workers working in these industrial centers commute to work and prefer living in the 

central city or inner suburban areas.  Population density in these outer suburban areas tends to be 

lower than industrial centers in the inner suburban areas.   In summary, local analyses suggest 

that industrial suburbanization has facilitated land-use restructuring in the central city area, but 

was not the main force underlying population decentralization, which has occurred mainly in the 

inner suburban area. 

The spatial association between road land use and population distribution exhibited a 

pattern similar to that between commercial & managerial and population distribution (Figure 11).  

Most of the cells with significant spatial associations were positive, which suggest road land use 
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generally had a strong positive influence on population distribution.  The central city area had 

dense road and population distribution, while cells with Low-High spatial association were found 

in the eastern and northern fringe of the central city area.  The inner suburb in the north, south 

and east of the central city area still had insufficient roads though we can find dense population 

clusters in these areas.  This again suggests that the inner suburban areas, despite with increasing 

population in recent years, lag behind in the development of services, including roads and 

infrastructure.  Not surprisingly, low-density road and population distribution were found in the 

remote suburb areas, which remain largely rural in nature.   

 

6. Conclusion 

Spatial restructuring of the post-socialist Chinese transitional cities has become a focus of recent 

academic inquiry on urban China.  This paper investigates spatial structure of transitional 

Chinese cities through the len of urban population distribution using census data and the recent 

developments in GIS.  Previous studies have used census population at subdistrict levels, which, 

however, has masked the heterogeneous nature of population distribution and exaggerates the 

boundary effects known as the modifiable areal unit problem.  In contrast to the orthodox 

aggregate urban population studies, this paper has developed an alternative analytical framework 

to investigate urban population distribution and spatial structure through a flexible scheme of 

generating population surface, using Nanjing, China as a case.  It has further integrated 

population surface modeling and exploratory spatial data analysis to uncover the salient features 

of urban population distribution and the effects of urban land uses.   

 We have first presented a new method for generating raster population surface with aids 

of detailed urban land parcel and building distribution data, which improves the redistribution of 
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aggregate population into a continuous raster surface. The generated population surface provides 

a more accurate scenario of urban population distribution in Nanjing, and minimizes the 

problems of modifiable areal unit, the arbitrary boundary, and the mis-representation of 

heterogeneous urban population.  The population surface maps have shown that Chinese cities 

such as Nanjing still have high-density population distribution in central city areas, and 

population density in general drops quickly with the increase of the distance to the city center, 

with occasional rebounds in certain suburban industrial centers.  The effects of suburbanization 

on the overall population distribution remain limited, although nodes of population distribution 

can be identified in the suburban areas. 

 To better understand population distribution, we have further investigated spatial 

associations between land use and population distribution at a finer scale.  We firstly assign non-

residential land-use intensity information to population surface cells, making the population 

surface a multivariate operational grid, and then use exploratory spatial data analysis to analyze 

spatial associations between land use and population distribution. We have found that 

commercial & managerial land use had the strongest influence on population distribution, 

generally with positive, unevenly distributed spatial associations.  Population suburbanization 

has been limited to the inner suburb area where population is densely distributed without 

substantial commercial & managerial land developments.  Industrial land use overall had the 

weakest influence on population distribution.  Industrial suburbanization is changing the land-use 

structure of the central city, but suburban industrial clusters did not have a significant effect on 

population suburbanization.  The road land use had similar influence on population distribution 

as commerce & management land use, but differed in terms of local variations in some parts of 

Nanjing. 
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 Despite heavy concentration of population in the central city and relatively limited impact  

of suburbanization, Nanjing still represents post-socialist Chinese cities which are experiencing 

urban outward expansion and suburbanization.  This is especially striking if compared with the 

city during Mao’s era when most of the urban population was concentrated in compact central 

city area within the urban wall.  Population has increased quickly in inner suburban areas, and 

major developments also take place in the two open districts in Nanjing, Nanjing Economic and 

Technological Development Zone in the northeast and Jiangning Economic and Technological 

Development Zone in the south, which are farther away from the city center and therefore has 

little effect on suburbanization and population distribution in Nanjing.   Spatial restructuring in 

Nanjing, however, is less drastic if compared with other major cities in the Yangtze Delta, and 

Nanjing is known for its efforts to preserve the urban environment and sometime is conservative 

in terms of economic growth and urban expansion.  Suzhou, for example, has developed two 

development zones adjacent to the old city district with massive infusion of foreign investment, 

which has dramatically changed the spatial structure of the city.  Hangzhou, another major city in 

the delta, has embarked a massive urban expansion towards east and south, spearheaded by 

newly developed economic-technological development zones, high-tech districts, and 

administrative centers.  Therefore, substantial differentials can still be found among Chinese 

transitional cities, and it is necessary to study population distribution and spatial restructuring in 

other coastal and interior cities of China.  
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Table 1. Summary statistics of subdistricts in Nanjing in 2000 

  # Subdistricts Minimum Maximum Mean Sum 

Residential floor area (m2) 41 172600 1276301 544243 22313979 

Residential parcel area (m2) 41 229448 3580034 964182 39531475 

Population 41 18265 133254 62950 2580962 

Residential floor area (m2) 16* 9493 928103 358414 5734620 

Residential parcel area (m2) 16* 87288 3860990 1545074 24721187 

Population 16* 1076 93680 30430 486881 

* indicates subdistricts not totally within the study area and the values indicate the  
   statistics of the parts within the study area 

Table 2. Regressions for exponential density function in different directions from CBD and of subdistricts

 

 

Dr=a*exp(b*r) A* B C D E F Subdistricts 
a 512.344 527.759 526.28 561.69 547.234 478.605 524 
b -0.022 -0.032 -0.037 -0.056 -0.043 -0.006 -0.046 
R2 0.796 0.832 0.826 0.911 0.909 0.305 0.421 

*Excluding points over Xuanwu Lake 
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Table 3. Population change of subdistricts in central city, inner suburb and outer suburb,1982- 
              2000 

    Central city Inner suburb Outer suburb 
1982 985,187 425,847 445,752 
1990 1,148,158 616,951 549,417 Population 
2000 1,338,101 1,235,569 764,468 

1982-1990 16.54 44.88 23.26 Change (%) 
1990-2000 16.54 100.27 39.14 

1982 53.06 22.93 24.01 
1990 49.61 26.66 23.74 % of total population 
2000 40.09 37.01 22.9 

1982-1990 -3.45 3.73 -0.27 Change (%) 
1990-2000 -9.52 10.35 -0.84 
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Figure Captions: 

Figure 1  The study area in Nanjing, China 

Figure 2  Process of generating raster population surface 

Figure 3  Population density by subdistricts in Nanjing, 2000 

Figure 4  Raster population surface in Nanjing, 2000 

Figure 5  Comparison between vector-based subdistrict population distribution (left) and 

                 raster population surface (right) for CBD area 

Figure 6  Comparison between vector-based subdistrict population distribution (left) and 

                raster  population surface (right) for Honghua Town of inner suburb  

Figure 7   Agglomeration and dispersion of population density by population surface in  

      Nanjing (Cell values indicate the mean population density within a circle  

     of 800m radius) 

Figure 8   Directional population change with distance from the CBD (A: Northeast, B:  

                 East, C: Southeast, D: Southwest, E: West, and F: Northwest)  

Figure 9   Spatial associations between commercial & managerial land use and 

               population distribution (the left map presents the distribution of the four types 

               of spatial association and the right map presents the significance distribution)  

Figure 10 Spatial associations between industrial land use and population distribution (the left 

                map presents the distribution of the four types of spatial association and the right map 

                presents the significance distribution)  

Figure 11  Spatial associations between road land use and population distribution (the left 

                map presents the distribution of the four types of spatial association and the right map 

                presents the significance distribution)  
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Figure 12 Population change by subdistricts in Nanjing, 1990-2000 
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